Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin.
نویسندگان
چکیده
Microneedle patches contain micrometer-scale needles coated with bioactive agents for minimally invasive drug delivery to the skin. In this study, we introduce layer-by-layer approaches to the fabrication of ultrathin DNA- and protein-containing polyelectrolyte films (or "polyelectrolyte multilayers", PEMs) on the surfaces of stainless steel microneedles. DNA-containing PEMs were fabricated on microneedles by the alternating deposition of plasmid DNA and a hydrolytically degradable poly(β-amino ester). Protein-containing PEMs were fabricated using sodium poly(styrene sulfonate) (SPS) and bovine pancreatic ribonuclease A (RNase A) conjugated to a synthetic protein transduction domain. Layer-by-layer assembly resulted in ultrathin, uniform, and defect-free coatings on the surfaces of the microneedles, as characterized by fluorescence microscopy. These films eroded and thereby released DNA or protein when incubated in saline or when inserted into porcine cadaver skin and deposited DNA or protein along the edges of microneedle tracks to depths of ∼500 to 600 μm. We conclude that PEM-coated microneedles offer a novel and useful approach to the transdermal delivery of DNA- and protein-based therapeutics and could also prove useful in other applications.
منابع مشابه
Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery.
Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated with stabilized lipid nanocapsules, for delivery of a model vaccine formulation. Poly(lactide-co-glycolide) microneedle arrays were coated with multilayer films via layer-by-layer assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively charged interbilayer-cross-linked multilamell...
متن کاملFabrication of polymeric microneedle arrays containing Amphotericin-B for transdermal drug delivery
Background and Aim: Drug delivery through the microneedle array has been considered as an easy and non-invasive method in recent years. The purpose of this study was to design and construct an array of biodegradable polymeric microneedles containing Amphotericin-B to introduce this system and its use in the treatment of cutaneous lesions caused by Leishmania major parasite inoculation as a mode...
متن کاملراهبردهای افزایش نفوذ در دارورسانی پوستی
Transdermal drug delivery (TDD) is a non-invasive, topical administration method for therapeutic agents. Transdermal delivery also has advantages including providing release for long periods of time, improving patient compliance, and generally being inexpensive. Despite these advantages, the use of TDD has been limited by innate barrier functions of the skin. Only small (<500 Da), lipophilic mo...
متن کاملA Review on Current Status and Future Potential of Transdermal Patches as a Promising Drug Delivery System
Transdermal patches are now widely used in topical and transdermal drug delivery systems (TDDS). Up to now, TDDS has been used in several conditions, such as smoking cessation, analgesic effect, nausea, contraception, and hormone therapy. Basically, there are two types of transdermal patches: the reservoir-type patches and the matrix-type patches. First generation TDDS were designed for deliver...
متن کاملSecond Harmonic Generation Diagnostic of Layer by Layer Deposition from Disperse Red 1–Functionalized Maleic Anhydride Copolymer
Layer-by-layer (LBL) electrostatic assembly of poly-electrolytes is proving to be an increasingly rich and versatile technique for the formation of multilayered thin films with a wide range of electrical, magnetic, and optical properties. In the present work we synthesized a new nonlinear optical (NLO) maleic acid copolymer containing Disperse Red 1 moieties, built-up multilayer assemblies by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2010